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The exchange term in the generalized Hartree-Fock equation found by the Green's-function method is 
investigated with an electron gas in a metal in mind. This term contains a generalized exchange charge 
density and a generalized exchange potential function. The latter not only is shielded, but contains effects 
depending on the spin of the particle being described by the Hartree-Fock equation. This spin dependence is 
calculated for spin deviations periodic in the lattice, and also for the case of static spin density waves. The 
original Overhauser spin-density-wave integral equation, arising from a perturbation in the exchange charge 
density, now must incorporate the corresponding perturbation in the exchange potential function. It is 
shown that the two perturbations are of the same order of magnitude, and that the constant solution of the 
integral equation is no longer valid under the same type of approximation. 

1. INTRODUCTION 

IT has been shown by Hubbard1 in 1957 that the po
tential function that appears in the exchange 

potential of the Hartree-Fock equation for a system of 
electrons (in a metal, say) should be shielded. Shielding 
of one sort or another has been used in solid-state 
problems long before that, however, one of the earliest 
examples perhaps being the screening in electron-
phonon scattering.2 The screening in the Hartree-Fock 
exchange potential and the screening in scattering 
problems are intimately related, since both can be 
formulated in terms of the response of the system to a 
disturbance. Therefore, we can sometimes usefully allow 
the results of scattering theory to serve as a guide to the 
shielding in the exchange term of the Hartree-Fock 
equation, when the former has been studied more com
pletely than the latter. Now in the case of electron-
phonon scattering, it is well known that an exchange 
correction should be taken into account in the shield
ing.3,4 This correction can be treated3 by adding a bare 
potential disturbance to the Hartree-Fock equation (in 
the exchange term of which the potential must be 
shielded, but that is not the problem yet), and then 
calculating by perturbation theory the response of the 
"direct" and "exchange" terms to this disturbance. The 
latter response is the exchange correction. Another 
procedure4 is to include "diagonal" exchange terms in 
the canonical transformation method for screening. 
Both give the same results. We therefore in this paper 
shall search for a corresponding exchange correction in 
the potential function that appears in the exchange 
term of the Hartree-Fock equation. One important 
reason for doing this is that this exchange correction is 
spin dependent, so that in problems concerning mag
netic impurities in a metal, or in fact in any magnetic 
problem, the spin dependency of the shielding must be 
taken into account. We shall see in fact that it must be 

* This research has been supported in part by the Advanced 
Research Projects Agency of the Department of Defense through 
the Northwestern University Materials Research Center. 

1 J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1957). 
2 J. Bardeen, Phys. Rev. 52, 688 (1937). 
3 M. Bailyn, Phys. Rev. 117, 974 (1960). 
4 D. Hone, Phys. Rev. 120, 1600 (1960). 

playing an important role in the problem of static spin 
density waves.5 

The starting point for the paper is the formulation of 
the "generalized Hartree-Fock equation" that comes 
from Green's function theory. If we define the usual 
Green's function as Ga(l,l')9 depending on the spin a of 
particles at points 1, (xi^iZi/i), and 2, and if we use the 
variational derivative form of the Green's function 
equation68, (we shall use Ref. 6 for our constant source of 
Green's function lore), we have for a system of electrons 
interacting by means of a (bare) Coulomb potential 

(i—+—-U(U))G.(l,l') + f « E G n ( 2 , 2 + ) ] 
\ d/i 2m I J a2 

Xv{\-2)Ga{\X)- / <*3i4ftG,(l,3)] 

X E 7^(3 ,4 | l )G f f (4 , l / ) = « ( l - l / ) , (1.1) 

the notation being identical to that in Ref. 6, except for 

F „ , ( 3 , 4 | l ) = [o!2v(l-2)\ <?,(3,4)-*l, (1.2) 
J L 6U(2</) J 

v(l-2) = 5(t12)e
2/r12. (1.3) 

£/(l,a-) is a spin-dependent perturbing potential. Equa
tion (1.1) is our generalized Hartree-Fock equation. I t 
is rigorous. I t is of Hartree-Fock form in that the 
interactions are divided into two parts, one of which can 
be identified as the "direct" term, the other as the 
"exchange" term. The direct term contains an obvious 
density function 

f E ^ ( 2 , 2 + ) (1.4) 

5 A. W. Overhauser, Phys. Chem. Solids 13, 71 (1960): Phys. 
Rev. 128, 1537 (1962). 

6 L. P. KadanofT and G. Baym, Quantum Statistical Mechanics 
(W. A. Benjamin, Inc., New York, 1962). Various references in the 
present paper are to the following pages: (6a) Eq. (5-12); (6b) see 
p. 156 for not unrelated chain-breaking approximations; (6c) see, 
for example, Eq. (3.3), and below Eq. (3.22) j (6d) see p. 19* 
(6e) Eq. (1.10). 
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times the bare Coulomb potential, whereas the exchange 
term contains an exchange density 

iGv(M) (1.5) 

times a quite complicated shielded three-point potential 
function Vaa> (3,411), which has yet to be evaluated. The 
screening referred to in the first paragraph refers to the 
screening contained in this V. It will contain an ex
change correction, as we shall see. From our point of 
view, the solution of the many-body problem consists in 
finding Fff(r'(3,4| 1) as a function of the G's. 

In order to make a one-electron equation out of this 
(i.e., to find the elementary excitations), we set the 
left-hand side equal to zero, replacing the time deriva
tive by an energy eigenvalue. If we replace the G func
tion by a wave function 

<ppa(x) txp(—iEpot) (1.6) 

and divide out the exponential factor (or alternatively 
integrate over t) we get 

n£,,+V,V2«-£7(l(r)>,,(rO+WdlPeot(«>,,) 
+ WWO P , ( r 1 ) ) = 0, (1.7) 

where 

T^direct(^P,) = fd2li L G«(2,2+)] 
J G2 

X » ( l - 2 ) ^ ( r 0 , (1.8) 

r(*P*'(*i))= [ d3d*ZiG.(l,3)l 
X E n . 2 ( 3 , 4 | l ) ^ ( r 4 ) . (1.9) 

W& 

This "effective wave equation'' has a number of peculiar 
properties as a one-particle equation (see Ref. 7, pp. 
61-62). Foremost among these is that W is in general 
not Hermitean, which implies that the eigenvalues are 
not necessarily real, in which case the particles would 
decay and we have an unstable situation. In this paper, 
we shall be interested in situations, where Eq. (1.7) has 
the same character as an ordinary one-electron equation, 
and we shall assume Hermiticity in what follows. A 
second peculiarity is that Wex depends on time in general 
[or alternatively on E if we had integrated over time: 
see below Eq. (1.6)]. This problem disappears if we 
make approximations which reduce F(3,4|l) to a 
"local" interaction {h=tz—t^). In Sec. 4, and in Ap
pendix A we make such approximations. Thirdly, the 
equation is nonlinear. This is nothing really novel, how
ever, as the ungeneralized Hartree-Fock equation is also 
nonlinear. 

The problem we set for ourselves is the evaluation of 
V in some special cases, mainly, to see how the spin 
dependency enters in and how it would modify previ
ously made calculations3-5 which treated it as spin 
independent. 

In Sec. 2, we obtain the equation for V, and reduce it 
to a form accessible to solution by an iteration pro
cedure. The zeroth iteration consists in neglecting all 
exchange effects. The V calculated on that basis is then 
substituted back into Eq. (1.1) for the first iterated 
equation. We then find that accompanying the response 
of the exchange charge density, there is a response from 
the (shielding in the) exchange potential function, the 
latter being quite a bit more complicated than the 
former. 

In Sec. 3, the spin deviations are assumed to have the 
periodicity of the lattice. We find general expressions on 
the basis of the first iterated equations of Sec. 2. The 
result contains both the responses of the exchange 
charge density and of the exchange potential function, 
the presence of the latter providing a different answer 
from that in Refs. 3 and 4 even for the case of no spin 
deviations. Polarization effects of a modified Wolff8 type 
enhance all the spin effects. 

In Sec. 4, we apply the formalism to Overhauser's 
spin-density waves, and it is found that the spin de
pendency of the exchange potential function is a not 
negligible effect. The resulting integral equation was not 
solved, however, and it is not clear under what condi
tions it has solutions (other than the trivial one). 

In Appendix A we reduce the spin-independent 
shielding of Sec. 3 to more familiar form, and include 
there a calculation of the Wolff polarization that indi
cates it to be rather large under certain conditions. In 
Appendix B, an estimate of one of the new terms in 
Sec. 4 is made. And in Appendix C, a comparison of two 
iteration procedures is made. 

It may help to avoid confusion to point out that we 
are using the term "Hartree-Fock" in a very loose way. 
Our generalized Hartree-Fock equation, (1.1), is rigor
ous, and is not at all the Hartree Fock approximation of 
Ref. 6. To get the latter from the former, we would 
replace 7,(4,311) by 5 ( 3 - 4 > ( 4 - l ) . 

2. THE EQUATION FOR V 

From Eq. (1.2), it is clear6 that an equation for V can 
be obtained if we invert Eq. (1.1), obtaining thereby an 
equation for G-1, and then take its variational de
rivative 

/ d V* \ f 
[i—+ U(U) 5 (1 -10+ /<22[*£G,2(2,2+)>(1-2)$(1-1') 
\ dh 2m I J * * 

-I-<23pG,(l,3)]E F,„<(31'|l) = G„(l , l ' )- \ (2.1) 

7 V. L. Bonch-Bruevich and S. V. Tyablikov, The Green's Function Method in Statistical Mechanics (North-Holland Publishing 
Company, Amsterdam, 1962). 

8 P. Wolff, Phys. Rev. 120, 814 (1960). This result was also obtained by the method of Ref. 3 ; see M. Bailyn, Scientific Paper 
029-B000-P2, Westinghouse Research Laboratories, 1961 (unpublished). 
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V.(ab\c) = S(a-b)lv(a-c)- fd3d4dSv(a-3)E ^ ( 3 , 4 , 5 , 3 ) 7 ^ ( 4 , 5 ^ ) 1 + fd3d4dS7,(4,5|c) 

X[£,(a»4 JS>3)7,(3,6 |a)]+* ( d2d3v{c-2)G<t{a,3)'Z 8Vc(3,b\a)/8U(2a2), (2.2) 
J #2 

where 

La (1,2,3,4) = *G,(1,2)G,(3,4). (2.3) 

In Eq. (2.2) we have used the notation 

V.(ab\c) = i:V9Aal>\c)9 (2.4) 

as that is the quantity that appears everywhere. I t should be noted however that if the disturbance U is a magnetic 
field or such like 

tf(2,±) = ±ff / i 0 , (2.5) 

then the response to the magnetic field is not the sum as in Eq. (2.4), but 

Mo-W,(l,21 3)EE • G ^ ( l , 2 ) + G ^ ( l , 2 ) , (2.6) 
5Z7(3+) SZ7(3~-) 

whose equation is 

M,(a,&|c)TMoS(a-&)S(0-- s) 

= - jd3dM5v(a-3)ZL*>(te53)Mff>(4,5\c)8(a-b)+ I d3dUSMa{^S\c) 

XCZ,(a ,4 ,S,3)F,(3,J |a)]- f [d3GAa.3y l ^ ( 3 , » J a ) , <r=dt. (2.7) 
7 _JZ7(c, + ) 5£7(<;, —) J 

Equations (2.2) and (2.7) are the basic equations to the former one. In this zeroth iteration we get the 
solve. Once a solution is obtained, we then can substi- standard Green's function equation for the shielding 
tute back into Eqs. (1.1) or (2.1). from Eq. (2.2) 

In comparing with Ref. 6, notice that our self-energy 
in Eq. (2.1) is divided into a Hartree part plus an ex- V<T^(a,b\c) = d(a-b)vs(a)c), (2.8) 
change part, whereas in Ref. 6 [see Eqs. (4)-(8)1 the , • • J J + * • j *• r & * . ' ^ . ^ > r~ TT \ . \^ 1 ^ where vs is independent of spin and satisfies 
separation is most frequently into a Hartree-Fock part 
(which is our Hartree term plus the exchange term with r 
V replaced by v) and a collision part. Thus our exchange vs(a,c) = v(a—c)— I v(a—3)J^ 1^(3443)^ (4, c). (2.9) 
term contains the collision effects of Ref. 6. J ff 

To solve Eq. (2.2) we must make some approxima- _ . - r ^ . . . . _ ,n .. , 
tions. The major one concerns the second variational T h e n f ° r a ^ iteration use this in Eq. (2 1) and 
derivative term, and constitutes the "chain-breaking" f m P u * E * (2-2>; ™ e r e s u l f " g ^ a f £ f • f ^ I 
approximation. The simplest plan is just to neglect the f , o r ^ a s J 2 * 2.2) itself except that V(3,b \ a) is replaced 
second variational term altogether. This leads to an ^ V j ^ 0 t C r m s ) b y 8 < 3 - * > ' ( M . In particular 
equation that corresponds to the simplest treatment of 
responses including exchange, as in Refs. 3 and 4. This iGa(afi)Q(b,a\c), (2.10) 
result can be used without great error, but a more where 

systematic approach is the following. ^ ^ Q(ft a | c )= f d2v(c-2)E • (2.11) 
Consider as a zeroth iteration the equations resulting ' J c $U(2a)' 

from neglect of all exchange terms. This means neglect 
of the last term on the left in Eq. (2.1) and the last two The equation for Q is obtained from Eq. (2.9) by taking 
on the right in Eq. (2.2), these two having come from a variational derivative 

Q(b,a\c) = -ij: / ,H^-3)[Z f f(64,43,35)+Z,(63,34,45)]F< r(5,6|c)^(4,a)- A>(J-3)££ , (3443)0(4 ,a |< ; ) , (2.12) 

where 
Z,„(123456) = G,(12)G,(34)G<r(56). (2.13) 
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The last term in Eq. (2.12) provides a shielding of the exact same type as in Eq. (2.9): It changes the v(b—3) of the 
first term in Eq. (2.12) to v8(b>3). It is convenient to define 

Aff(a45b) = / d2d3ivs(b,3)vs(2,a)+vs(b,2)vs(3,a)']La(522334). (2.14) 

7,(a,J|c) = S(0-&)j*(^ 

+Gff(a,b) jd4d5Z VA*,5\c)As(a45b); (2.15) 

Ma{a,b\c)^^h{a-b)b{a-c) 

= - d3d4d58(a-b)v(a-3)j: Laf(3453)M(ff(45\c)+vs(b,a) / ^5^(4 ,5 |c )L, (a456) 

Then Eqs. (2.2) and (2.7) in this first iteration read: 

The last terms represent the response of the potential 
function in the exchange term of Eq. (2.1). They 
depend on spin. The next to last terms are the response 
of the exchange charge density (and correspond to what 
was calculated in Refs. 3 and 4). They also depend on 
spin. The second part of the curly bracket in Eq. (2.15) 
is the response of the Coulomb charge density, and 
constitutes the standard shielding term. It is inde
pendent of spin. For this reason, the corresponding term 
in Eq. (2.16) is of little significance. 

It is interesting to note that if we allow deviations of 
up-spin wave functions from down-spin wave functions, 
and if these are small, then V+ and M~ are of zeroth 
order and V~ and M+ are of first order, where 

V±^(V+±VJ), M±=i(M+±MJ). (2.17) 

The zeroth-order response to a magnetic field is then 
from Eq. (2.20) 

M-(aib\c)=ii(fi(a-b)b(a-c)+v8(b}a) 

X / d4d5M-(4:,S|c)L0(aA5b), (2.18) 

where LQ is the zeroth-order part of Lff. Taking com
ponents of this equation provides exactly the spin 
polarization of Wolff.8 Thus the response in the ex-

to Note added in proof. It has been pointed out that Eq. (2.15) 
is a generalization of Eq. (68) of G. Baym and L. P. Kadanoff, 
Phys. Rev. 124, 287 (1961). A systematic expansion procedure has 
been derived by L. Hedin (to be published): See his Notes "On 
the N+l Electron Problem," from the Solid State Science Divi
sion of the Argonne National Laboratory, Argonne, Illinois 
(unpublished). 

+G9(a,b) dUS £ M9> (451 c)A^ (a45b), er= ± . (2.16) 

change charge density provides a spin polarization as 
calculated by Wolff, and the response of the exchange 
potential function provides nothing new to zeroth 
order. Of course, once we use the full expression Eq. 
(2.15) for V in Eq. (2.7), we should get new terms. 

Equation (2.15) will be used below in Sec. 3. How
ever, it is still too complicated for many purposes, and 
we shall write down now a weaker iteration procedure on 
the basis of which we shall be able to make calculations 
in Sec. 4. The relationship between the two methods is 
discussed in Appendix C. In the previous scheme we 
took the solution neglecting exchange, Eqs. (2.8), (2.9), 
and substituted back into Eq. (2.1), and proceeded 
from there. Here we shall take the solution neglecting 
exchange and substitute back into Eq. (2.2) itself. This 
then is the first step of an iteration procedure dealing 
with just the equation for V. The result is 

Vv(a9b[c)=8(a-b)va(a}c) 

+v8(b,a) /d4v8{4,c)La{a44b) 

+Gff(a,b) / ^ . ( 4 , c ) E A,, (aUb). (2.19) 
J a' 

A detailed discussion of the error involved relative to 
that of Eq. (2.15) is given in Appendix C. 

3. SYSTEMS WITH SPIN DEVIATIONS PERIODIC 
IN THE LATTICE 

If the spin deviations have the periodicity of the 
lattice, then the well-known expansion60 of the Green's 



G E N E R A L I Z E D H A R T R E E - F O C K E Q U A T I O N A1325 

function in the imaginary time domain 

^<r(l,2) = S ( -^ ) - 1 ^ka ( r i ) ^k < r ( r 2 )* E exp(—izkti2)/(zk—Ek), 
k zk 

contains functions of Bloch form 

(3.1) 

<pk<rO) = E «k .K,aexpf t (k+K)T] , (3.2) 

K 

where the K's are reciprocal lattice vectors, and the k's are restricted to one zone. Thus 

G , ( l , 2 ) = ( ~ t f ) - 1 E E e x p t - f ^ u + t C k + K O . r i - f f k + K j J . r a J G ^ i l K i K , ) , (3.3) 
A KiK 2 

where 
£,(& | KiK2) = «k,Ki,«r«k,K2.«r*(2& —-Ek)""1 • (3.4) 

Similarly, letting p be unrestricted, 

L,(l ,2,3,4)= ( - # ) - * E E exp{*(£, l - 2 ) + t ( * ' , 3 - 4 ) + * K 1 - r 1 + • • •+fK4T4}iG,(A|KiK2)^(A / |K8K4), 
ftjfe' K i - . - K 4 

» . ( l , 2 ) ^ ( - i / S ) - 1 E ».(#) e x p p f o 1 - 2 ) ] . 
(3.5) 

We shall also need a component 

A ^ i | ^ | K M - * W ~ 3 / ^ ^ (3.6) 

In this, we have used k to mean a four-vector (k,Zk), are 
and (&,#) to mean a scalar product in four dimensions. ZP=TTV/(—0)-\-H, J > = ± 1 , ± 3 , • • • , 
Further, in what follows we shall mean by k+K a four z > = Trvr/(—iB)+u / = d=l ± 3 ••• (3 9) 
vector ( k + K , a;*). P __ ' ; / 

With these expressions and expansions in mind, we MP'' — TTV /{—tp), v — 0, ± 2 , 
seek now to solve Eq. (2.15). To do this, we take the W e s h a l l u s e Q t o m e a n e v e n in t egers (as above) and z to 
Fourier component m the imaginary time domain** m e a n o d d in t egers, in what follows. 
(0, -ip) 

Now by forming the component of the type in Eq. 
•0 (3.7) of the Eq. (2.15), we obtain "component equa-

V,(pp'\p") = I dadbdc exp{-i(p, a-c) tions," containing the inhomogeneous term v(p-p')dp»,0. 
J 0 We shall then suppose that only those component V's 

are not zero that have this inhomogeneous term non-
+i(p',b-c)+i(p",c))V1,(a,b\c). (3.7) z e r o ? i n i t s equation. That is, we shall seek a self-

Using the boundary condition- consistent set of solutions of the form 
V*\pp' I *") = «*" .o W(fc#') . (3.10) 

Using this form, and the above expansion coefficients, 
in Eq. (2.15), we conclude that the frequencies ap- we then find for the component equations corresponding 
propriate to the various fourth components of the p's to Eq. (2.15) 

V9(p,q) = v(p-q)-v(p-q)?: L9.{k+P, k+q)Va,(k+p, k+q) 
<r' h 

+ZN.i(k+p,k+q)V.(k+p,k+q)+j: Q,,^(k+p,k+q)V,.(k+p,k+q), (3.11) 
k k,cr' 

where 

L.(k+p,k+q)= E 5K 1 _K 2 + K3-K 4 ,o^(^+^-K 2 |K 1 K 2 )G.^+g-K3|K 3 K4) , (3.12) 
K 1 . . . K 4 

N.k(k+p9k+q)= E ^ - K ^ - K ^ ^ H - i ^ ^ (343) 
K 1 . . . K 4 

Q„>k(k+p,k+q)= E G^k/\K1K2)Aaf(p-k/-K1\k+p}k+q\q--k,-K2). . (3.14) 
k'KiK2 
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The summation index k in Eq. (3.11) is not restricted to 
one zone. However, the first argument of G(^>|K,K'), 
namely p, must be so restricted. The entire dependence 
on the details of the lattice potential is contained in the 
complicated Z/s, iV's, and Q's, leaving the equation for V 
relatively simple. 

To solve Eq. (3.11) we shall suppose that the depend
ence on p and q other than through the combination 
p—q is small. This is of course exact for the first two 
terms on the right, but not for the other two because of 
the dependence of Nk and Qk on the superscript. An 
averaging has been used in the corresponding scattering 
problem,3,4 and we shall perform a similar type of 
approximation here. We introduce the sums 

La{p-q)-H L„(k+p, k+q), (3.15) 
h 

N,(P,q) = j : N,k(k+p, k+q), (3.16) 
h 

e«-(M) = E Q.*h(fi+P, k+q), (3.17) 
k 

and rewrite Eq. (3.11) as 

Vff{p^)+Y:Va>{p,q)Laf{p--q)v(p-q)~Va(p,q)Na(pA) 
er ' 

-£V*(t,q)Q.,(p,q) = v(p-q)+-- , (3.18) 

where the dots indicate terms that depend only on the 
difference between V„(p,q) and V„(p+k, q+k)} such 
terms dropping out completely if V\(p>q) depended only 
on p—q. Thus we propose another iteration procedure in 
which these terms are neglected in the zeroth iteration, 
and we shall in fact stop at this stage, although it is not 
too difficult to compute (formally) corrections to it.3 

Notice that the V(p,q) in Eq. (3.18) depends on p and q 
explicitly, because of the presence of N(p,q) and 

Q(P,q)-
Using the abbreviations 

V±=V±(p,q) 3l± = N±+Q±±+Q?± 

L±=L±(p-q) (3.19) 

v=v(p-q) 9 l ± ' = i V ± + e ± ± - C T ± 

we solve Eq. (3.18) 

V+= v\ [ 1 + (L++LJ)v-i (91++91-)] 

[ l+2L_* ; -9 l_ ] . (3.20) 
1 - 9 L / 2 J 

The equation for V- is obtained from this by inter
changing + and — everywhere. This is the basic result 
of this section. 

This result can be made a bit more transparent by 
noting that to first order (in spin deviations) the second 
square bracket is equivalent to the first. Since it is al

ready multiplied by a factor of first order, we can write 
to first order in the denominator 

V±(p,q) = i>.(fi,q)S±(p9q), (3.21) 

where vs is a modified version of the shielding found 
previously by the author3 apropos of electron-phonon 
scattering, 

Up,q) = v(p-q){l+v(L++LJ)-UW++dlJ)}-1, (3.22) 

the ad's containing the response from both the exchange 
charge density and the exchange potential function, and 
where S± is a new spin-dependent factor 

r 1 ad+'-ad-' -r1 

1 9d + ' - 3 l_ ' 
^l=fc ; (3.23) 

2 1 - i ( 9 V + 9 l _ ' ) 

the last form here is not as accurate as the first if the 
effects are large. The last form writes the spin effect as 
a separate term. Notice the denominator 1—|(9d+ '+3l_') 
in all the spin effects. This is a modified version of the 
Wolff spin polarization8 modified through the presence 
of the Q's in 3d', i.e., through the response of the ex
change potential function. The Q's cancel in zeroth 
order of spin deviations, however, so that 3d' —> N in 
that case, and the modification disappears. 

In the case of long waves (p—*q), we can solve Eq. 
(3.11) exactly, for only the terms proportional to 
v(p—q) need be considered. The result is then 

LimV±(p,q) 
P-+Q 

= [ L + + L _ - L? (9d±'- 3 V ) (1 - 3 V ) - 1 ] - 1 . (3.24) 

This shows a spin effect even in the limit. Had we used 
Eq. (3.21), we would have found that the spin-de
pendent factor S would not have been altered in struc
ture at all in going to the limit. 

4. SPONTANEOUS SPIN-DENSITY WAVES 

In this section we apply the formulation of Sees. 1 and 
2 to the problem of static spin density waves. We follow 
the procedure of Overhauser without change, the only 
difference arising from our more complicated potential 
function, the effect of which can be anticipated before. 
doing any calculations. Overhauser's method is to com
pute the matrix elements of the exchange term in the 
Hartree-Fock equation. These matrix elements depend 
on the exchange charge density explicitly, and if this 
charge density is regarded as spin dependent to first 
order, then an expansion in "spin-density waves" is 
possible. But the coefficients in the expansion depend on 
the same type of matrix elements that one was calcu
lating in the first place. Thus the expansion constitutes 
a homogeneous integral equation for these matrix ele-
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ments. Nontrivial solutions to it would imply spontane
ous static spin-density waves. We are not interested 
here in any refinements of this procedure, or on the 
minimizing of the energy that is required for the 
stability of these waves, or such matters. We are 
interested only in the setting up of the equation itself. 
Our argument is then very simple: Whereas Overhauser 
considered only the perturbation arising from a spin-
dependent exchange-charge density, it follows from Eq. 
(1.7) of Sec. 1 that the shielding in the generalized 
exchange-potential function is also spin dependent, and 
should also be expanded in spin waves. The purpose of 
this section is to outline how this takes place, and to 
show that the effect is not negligible. Unfortunately, the 
resulting integral equation is so complicated that we 
cannot get any explicit solutions, but we nevertheless 
can conclude that in problems of this sort, the spin 
dependence of the shielding must be taken into account. 

We first shall repeat the theory of Overhauser in our 
notation. In general, we need from Eq. (1.9) 

Wt 

XiG,(l,3)7,(32|l), (4.1) 

(where we shall leave off the subscript "ex" on W for the 
rest of this section), of which the spin dependency is our 
primary interest. Overhauser considered only the spin 
dependency of Gff. For Va, he eventually uses a delta 
function potential. Thus, in our notation, he uses for 
7,(3,211) in Eq. (2.19) just the first term 

F.(3,2|1)^6(3-2K(2,1), (4.2) 

to which first "locality" is applied 

vs(2,l) = 8(t2-h)vs(r21), (4.3) 

and then the delta function approximation is applied 

v.(rn) = A6(rtl). (4.4) 

Then he proceeds to calculate W. [His derivation is 
stated more generally than is implied by Eq. (4.4), but 
the results upon which he hypothesizes about spin 
density waves are obtained on its basis. We content 
ourselves with comparing with the simplest of his 
arguments. We shall in fact not need Eq. (4.4) until the 
very end.] 

Our procedure is to use the full expression, Eq. (2.19), 
apply locality to it, and finally to use the delta function 

where 

F^(3 ,2 |1) = 5(3-2K(2,1), 

approximation. We get three terms 

^(l',l)= E WW,1)=E fdndld^vin)*^^) 
i—l i J 

XtG,(l,3)7r«>(3,2|l)f (4.5) 

(4.6) 

V™ (3,211) = v.(2,3) J dto.(4,l)L.(3,4,4,2), (4.7) 

F,<»(3,211) = G„(3,2) [dto.(4,l)Z A,,(3,4,4,2). (4.8) 
J <Tf 

Wa) is the Overhauser term. W(2) is the spin effect from 
the exchange charge density in the shielding, and W(z) is 
the spin effect from the exchange potential function in 
the shielding. 

We now wish to obtain the locality of the F ( i ) ,s. To 
get the locality simply of fls(2,l), as already appears in 
the Overhauser term, we go back to Eq. (2.9), and 
notice that in the standard6 expansion of L 

Z,(3,4,4,3) = «?,(3,4)G,(4,3) = - (-i/?)"1 

X E E Spipj'far^rs) 

XF(pip2|O0 exp(- iOA0, (4.9) 
where 

F(pip2 |^)= ( / P 1 - / P 2 ) [E P 2 -E p l +0]-S (4.10) 

and where generally we write 

^ > P l P 2 - - - ° ' ( r a r & r c J * d - - 0 

= = [ ^ P l < r ^ a ) ^ p i ( r ( ^ 6 ) * ] [ ^ p 2 < r W ^ p 2 < r ( ^ ) * ] - • • , ( 4 . 1 1 ) 

we get the desired locality (h=t4) by ignoring the fre
quency dependence in F. This is the style of approxi
mation by which we shall obtain locality in the other 
terms. 

In Eq. (4.7), we want again h=t2=h. We have on the 
basis of the locality of the v8

9s that h=t4i and t2=t3. But 
the factor £,(3,4,4,2) by the approximation above gives 
fa=h, which gives us what we wish. 

In Eq. (4.8), we have A„ which is given by Eq. 
(2.14). In A, appears a product of three Green's func
tions, for which the expansion is 

G(l,2)G(3,4)G(5,6)|Zl=^=i(-^)-2 E *pipW/(n- • 'f*)FfaiMz\Qjn*) exp(-«Wi2-ffl,,/18). (4.12) 
H =tz v vf 

Again the procedure is to ignore the frequency dependence in F: 

F(piP2P3|^ ,)=^(PiP2P3|0,0)=F(pip2p3) , 

[ £ i ( / 2 - / 3 ) ( l - 2 / 1 ) ] + [ ] + [ ] (4.13) 
F (P1P2P3) = F (p2p3pi) = F (p2pips) = 

(E1-E2)(E2-Es)(E3-E1) 
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This gives locality to F(3). The empty brackets are obtained by cyclical rotation of the indices in the first one. 
The three potentials are now 

JV»(3,2| l) = 8(fo)«(3-2K(r,i), (4.14) 

F ^ ( 3 , 2 | l ) = -6(^2)5fe) dnv9(ni)v.(m)i E / ^ p ^ ^ W ^ W s ) , (4.15) 
J P1P2 

7,w(3,2|l) = 8(<i08(fM)/dftf'.(r4i)G»(3,2)i E ^(piP2p3) 
J P1P2P3 

X / drrfr<£v9(r2i)va(rn)+v9(r2s)va(rn)'] Z ^p^p/farsrsrererO. (4.16) 

We proceed to calculate the W's of Eq. (4.5). 
Following Overhauser, we introduce the spin-dependent wave function 

*p*(r) = * p W + W P ( ' V P + Q W+^P-Q,P (^¥P-Q(r) , (4.17) 

where Q is a wave vector to be determined, where by first-order perturbation theory 

»p ' .P ( ' ) =->P.P ' ( ' ) *=^(p , , p ) (^p ' - Jep)" 1 , (4.18) 

and where the ^'s mean plane-wave functions. In computing Eqs. (4.5), we find two possibilities l' = l+Q, and 
l' = l—Q, of interest. We consider from now on only the former. 

For W*\ we get from Eqs. (4.5), (4.14), and (4.17) 

WS»(y,l)= Idx.dr, £ /p^p,(fi)^p.(f2)*^(f2i)^(ri)Vi(r2) 
J P 

= E ^ , ( p + Q , p)fW»(p+Q, P), (4.19) 

where 
£i ' i«(p+Q, P) = (/p-/^Q)[£p+Q- JEP]-1^(p-l) • (4.20) 

This is Overhauser's result. 
For J¥(2), we get from Eqs. (4.5), (4.15), and (4.17) 

W W , l ) = - £ E ^1^(p1|p2p3)/pi^(P2P3)3 (4.21) 
P1P2P3 

where 

^fi'i<r(pi|p2p3)= / drv • •^^s(r23)^(r4iVi'(ri)Vi(r2)*pip2P3(rii,3r3r4r4r2). (4.22) 

We find after a tedious calculation, manipulation of signs of dummy indices, and use of the identity in Eq. (4 18) 
that Eqs. (4.21) and (4.22), for l' = l+Q give 

W^(Y,l) = Z Wff(p+Q, p)2W>(p+Q, P), (4.23) 
p 

where 

Bi'i»(p+Q,p) = i E /p1Ci?(P2,p)-/?(p2 ,p+Q)X£p + Q-£p]- ' 
P1P2 

,P1+P2+P^S 

I ' .pl+P2+P^« (P2+1)^(P1+10] 
+ 2^(P, P + Q ) E ^l,P2-pi+p^(PlP2)^(l-p2)^(^2l) • (4.24) 

P1P2 

This represents the spin effect stemming from the exchange charge density in the exchange term of the shielding. 
The second pip2 sum here came from the first-order part of G>(1,3) in Eq. (4.5), i= 2, paralleling the origin of By^. 



G E N E R A L I Z E D H A R T R E E - F O C K E Q U A T I O N A 1329 

WV8>(1' ,1)=-E Z fpfp'I<\pyP2Pz)vs(Pn)vs(p2z)vs(pzi)Xi>i% (4.25) 
PP' P1P2P3 

where 

Xi'iff= F" 1 / rfri^r2rfr8^i'(ri)Vi(r2)^Pir(ri)^pa(r3)*^p'<r(r8)^p'a(r2)* 

XCexp(- t r i -p 3 i - i r 2 -p23-^3-pi2)+exp(- i r 1 -p3i—ir 2 -p i2- i r 3 «p23)] . (4.26) 

The square bracket in x comes from use of plane waves in the <£ of Eq. (4.16), valid since the sum over </ contains 
no first-ordei terms. After another tedious calculation we find 

WV3)(1',D = E Wr(jt+Q, p ) 2 W » ( p + Q , P), (4.27) 
P 

where 

By^(p+Q,p) = - E L ^ ( p , P + Q ) / p ^ s ( ^ i 2 K ( ^ 3 K ( M ) ^ ( p i p 2 P 3 ) 
P1P2P3 p ' 

X0p ) l+p 3 1 [_0p ' ) l - _p 2 3 - | - 0p ' ) l _p 1 2 'T"Op / , l '—pl2 l " p ' , l ' — p23J . \Q.Zo) 

This represents the spin effect stemming from the exchange potential function in the exchange term of the shielding. 
We are thus in a position to write the integral equation by adding Eqs. (4.19), (4.23), and (4.27), and substituting 

into Eq. (4.5). Denning 
W±(y,\) = W+(V,l)±W_(Y,l), (4.29) 

we get 

WHV,l) = Z TF±(p+Q, p) E Bvl^(p+Q, p ) , (4.30) 
P i= i 

where the B's are given by Eqs. (4.20), (4.24), and (4.28). 
To solve, we set 

W+(V,l)=0. (4.31) 

For W~~, we have the possibility of a static spin-density wave of wave vector Q of the Overhauser type provided 
there exist nontrivial solutions to Eq. (4.30). As stated at the outset of this section, we find extra terms, J3(2) and 
J5(3), beyond what Overhauser found, but we find it impossible as yet to solve the equations. 

I t is of interest to write the B's for the case where the vs function is approximated by a delta function, as in 
Eq. (4.4): 

£ i ' i ( 1 ) (p+Q, V) = AF(V) p + Q ) , (4.32) 

3 I M ( 2 ) ( P + Q , P W 2 { £ [?(P2,P)-F(p 2 , P+Q)]C^p-fQ-^p]-1/pi5i)P1+p2+p 
P1P2 

+ ^ ( p , P + Q ) E 5 i , P 2 - p 1 + p F ( P l p 2 ) } , (4.33) 
P1P2 

Bv^iP+Q, v) = A*F(v, P + Q ) E E F(p1p sp,)/p»*p i H .p , I[5p . i l_M ,+V.t-pM+«,M'-P U+8,' . i '-»«]- (4-34) 
P1P2P3 p ' 

For W^ we get from Eqs. (4.5), (4.16), and (4.17) 

I t is immediately evident that the solution appropriate 
to Eq. (4.32) alone, namely, 

W<-) (l',l) = const, (4.35) 

is no longer a solution when i?(2) and Z?(3) are taken into 
account, even on the delta function approximation. The 
new terms are of the order (A/EF) and (A/EF)2 times 
the original term. The value of A, according to Over
hauser, is of the order of EF (the Fermi level), so that 
there is no assurance that the new terms are small. We 
have calculated the first part of Eq. (4.33) in Appendix 
B to verify this. The equation is so complicated that 

it is not clear under what conditions a nontrivial solu
tion may exist. In any case, if there is a nontrivial 
solution, there is no guarantee that the Q value for it 
would necessarily lie near the Q Overhauser found. 
Unfortunately, we can do little more here than point to 
this new source of effects, and to claim that it is not, 
apparently, a negligible one. 

5. CONCLUSIONS 

In the preceding sections we have investigated the 
nature of the potential function in the exchange term of 
the generalized Hartree-Fock equation, subject to a 

file:///Q.Zo
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basic chain-breaking approximation which amounts to 
an iteration procedure using for zeroth iteration the 
solution neglecting exchange. This procedure also line
arizes the equation for the potential. In Sec. 3, for spin 
deviations periodic with the period of the lattice, the 
spin-mdependent part of the potential turned out to be 
a Coulomb potential shielded in a way slightly different 
from that found previously for the electron-phonon 
scattering problem. In the same section, the spin-
dependent part of the shielding was found, and it could 
take most rigorously the form of an alteration in the 
spin-independent shielding denominator as shown in 
Eq. (3.20), or, to within a first-order approximation, it 
could be regarded as a multiplicative factor in the 
potential as in Eq. (3.21), or, finally, it could be re
garded as a separate term in the potential as shown in 
Eq. (3.23). The spin effects are always enhanced by a 
Wolff-type polarization, and this enhancement may be 
rather large (Appendix A), especially for metals with 
distorted Fermi surfaces. Perhaps this is the reason why 
substances like copper are the most important for 
exhibiting anomalies when magnetic impurities are 
present. 

In Sec. 4, we showed how these considerations affect 
the spin density wave calculation of Overhauser. The 
integral equation determining the spin-density wave 
matrix elements contain now terms arising from the spin 
effect in the shielding of the potential in the exchange 
term of the Hartree-Fock equation (generalized). The 
new terms are apparently of the same order of magni
tude as the original ones that arose from the spin effect 
in the exchange charge density in the Hartree-Fock 
equation. The new integral equation is sufficiently 
complicated to imply that solutions beyond the trivial 
one would be hard to find. 

The general conclusion is that in a one-electron equa
tion, the spin dependence of the shielding in the po
tential may play an important role in magnetic problems. 
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APPENDIX A: EVALUATION OF THE EXCHANGE 
SHIELDING AND THE POLARIZATION 

We reduce in this Appendix the terms iVo and Qoo 

# o ( M ) = * E G0(p+k)Go(q+k)vs(k), (Al) 
k 

Qoo(p,q)= £ Go(k')A«(p-k'\k+p, k+q\q-k'), (A2) 
kk' 

in the denominator of Eq. (3.22) [see Eq. (3.19)] for the 
exchange shielding, and in the solution of Eq. (2.18) for 
the spin polarization. We do this on a free-electron 

model for the space integrals, and using a "local" 
approximation (see Sec. 4) for the time integrals. 

First consider N. In space-time integrals it is 

No(p: •HL 
-W 

dadbvs(a,b)[iGo(a—c)G0(c—b)~] 

Xexp[ - ; (p - r ac+q- r c & ) 

+ i(Zptac+Zqtcb)l- (A3) 

The local approximation allows us to use 

vs (a,b)9^d (ta b)vs (ra b); vs (k)^vs (k), (A4) 

and to neglect the subsequent 0 dependence in the ex
pansion of iG(a—c)G(c—b), (where tb = ta) given by Eq. 
(4.9). The v sum in Eq. (4.9) yields d(tac) so that there 
is no dependence in Eq. (A3) on %v or zq. The result is 

^ o ( M ) = £ F(p', p ' - p + q > s ( p ' - p ) , (A5) 
P' 

which is the same as found in Refs. 3 and 4. 
In the limit of small s = q—p, we have 

= V (87T3)-1 J dSf IVE' | ~hs (p'. p). • • 

integral over Fermi surface. (A6) 

Using a B ohm-Pines cutoff expression (cutoff frequency 
kc=0.353kors

112, where rs is the Wigner Seitz radius in 
atomic units, and ko the radius of the Fermi sphere) 

^ ( P ) = 4 T T ^ - 2 p>kG 

= 0 p<kc, (A7) 

and using free-electron energies, we obtain from Eq. (A6) 

No(p,p) = (irahp)-1 l nC^o+iO^- 1 ] P> fa-ke 

= (jahp)~l l n [ ( f t o +/0 |*o- />h 1 ] 
p<ko~ kCj 

where fl^^/wg2. Thus, some limiting cases are 

No(ko,ko)= (Tdhko)-1 ln(2£0/&c) ? 

N0(0fi)=(iraM-1=0.S58 (Cu). 

(A8) 

(A9) 

If we wish to do better than a free-electron calcula
tion, we must have an analytic expression for | VE]"1 . 
Short of this we may multiply the result in Eq. (A8) by 
some average correction such as 

fdS\VE\-n/[ fdSlVEl-1! d S l V E h M . (A10) 
J free electron 

Values for e can be obtained from specific-heat data 



G E N E R A L I Z E D H A R T R E E - F O C K E Q U A T I O N A 1331 

TABLE I. The shielding factor in the long-wave limit for mono
valent metals, a is the lattice constant, related to the ko of Ap
pendix A by koa— (127r2)1/3 for fee lattices and by koa= (6TT2)113 for 
bec lattices, in angstrom units, e is given by Eq. (All), and the N 
is the long-wave limit of the function denned in Eq. (Al). The 
quantity (1—iV)"1 is the polarization effect on the matrix element. 
And (1—N)~2 is the polarization effect on the transition proba
bility. 

Factor 

a 
€ 

(1-
(1-

-N)'1 

-iV)-2 

Li 

3.43 
1.22 
3.94 

15.5 

Na 

4.22 
0.885 
2.53 
6.40 

K 

5.20 
0.862 
2.88 
8.30 

Rb 

5.56 
0.841 
2.91 
8.48 

Cs 

5.92 
0.794 
2.76 
7.61 

Cu 

3.61 
1.44 
4.72 

22.3 

Ag 

4.08 
1.02 
2.50 
6.25 

Au 

4.07 
1.16 
3.17 

10.2 

order of magnitude as the original term Ba) in Eq. 
(4.32). The first part of B$\ B', can be written 

B/==A2[Ci(Vfp-Ci+Q,v+Qfv+Q-Di,p+Di+QfV+Q2 

X C E p - i W ] - 1 , (Bl) 
where 

A , P = ] C /k/i-p-kDEi-p-k—£P] 

(B2) 

(B3) 

(Ziman,9) or effective mass data. In Table I, we tabu
late the values for some materials. We notice that when 
the Fermi surface gets distorted, the polarization gets 
quite large.10 

Next we turn to Q. Notice that Q does not enter the 
polarization 1—91' (to zeroth order). It provides a 
correction to the spin-independent shielding however. 

In space-time integrals, Eq. (A2) becomes 

QiP^^Vi-iftT1 / dadbd4G0(a-b)AQ(a4:4:b) 

Xexp[-i(a,p)+i(4:,p-q)+i(b,q)li. (All) 

Expanding A0 according to Eq. (2.14), using the local 
approximation of Eqs. (4.12), (4.13), we find 

A0(a44&) = i F - 1 ( - ^ ) - 2 E vs(k)vs(k') 
kk' 

Xexp[i(k,b)-i(kf,a)li E ^(PiP2p3) 

P1P2P3 

Xexp[i(zk—zkr)h+iti' (pi—p3)] 

X[6(k ,-p1+p2 ,0)5(k+p2-p3 , 0) 

+5(k+Pi-p 2 , 0)5(k'-p2+p3, 0)] , (A12) 
where the sum on k contains four components. We 
neglect the zk dependence of vs(k) (the local approxima
tion again), and find after a calculation 

C(M)= Z: ^(<l+k> k'> P+kK(q+k-k') 
k,k' 

Xt^P+k-kO/p+q+k-k'. (A13) 

This is as far as we go in reducing Q. 

APPENDIX B: ORDER OF MAGNITUDE OF B™ 

We here calculate the first part of J5(2) in Eq. (4.33) in 
order to demonstrate that it appears to be of the same 

We content ourselves with calculating C on a free-
electron model for the energy. Integrating over 
cos(l—p, k), we find 

1m W 
CiiP = I(K',K) = CEF~1I(K,,K) , (B4) 

h2h2 8TT2 

where ko is the radius of the Fermi sphere, V is the 
volume, c is a constant of order of magnitude 1 (= f for a 
bec lattice, and = f for an fee one), and where EF is the 
Fermi energy. Here 

1 r1 

/(*',*)= / dxXln 
a' J o 

(X-K')2-K2 

{X+K'Y-K? 
(B5) 

9 J. Ziman, Electrons and Phonons (Oxford University Press, 
New York 1960), pp. 109, 114. 

10 The calculations that led to Table I were first written up in the 
report mentioned in footnote 8. 

with the abbreviations 

x=k/ko, K'=|1—p|/&o, K = p/ko. (B6) 

The integral in Eq. (B5) can be carried out, and we find 

/(*',*) = OO-^i-H*!2-1) ln[(*i+1) I*i-11-1] 
+^-K^2 2 - l ) l n [ f e+ l ) | x 2 - l | - 1 ] } , (B7) 

where 
£ i — K ' + K , X2=K'—K. (B8) 

The function / is of order of magnitude 1. A few 
limiting cases are 

Lim/(/c',K) = 2, 
K ' - » 0 

Lim7(/,K) = 2{1- ( ( /C ' 2 -1 ) /2K) 

X l n [ ( 2 K + l ) | 2 K - l | - 1 ] } , 

Lim/(/,/c) = 2{ 1 - ((4/c2- 1)/4JC) 

Xln[(2K+l) |2/c-l | -1]}. 

Thus from Eq. (B4), C is of the order of magnitude 
1/EF. But A, according to Overhauser,3 is also of the 
same order. Hence we conclude that the calculated term 
in 2?(2) is of the same order of magnitude as the original 
term B™. 

(B9) 
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APPENDIX C: COMPARISON OF THE TWO 
ITERATION PROCEDURES 

In this Appendix, we apply the formalism of Sec. 3 
to the problem of Sec. 4, and thereby assess the ap
proximation that went into the latter. 

Using the spin-density wave expansion of Eq. (4.17) 
in the form 

^ M = EWp (*Vp+ Q(r) , (CI) 
Q 

where Q can take on values + Q , — Q, and 0, the ± Q 

We get Eq. (3.11) from this rather general expression 
by seeking only the V(p,pf | 0) components. But here we 
regard each G(- • • | Q1Q2) to be of ^th order if n of the 
Q's are nonzero. I t can readily be seen from the equation 
that V(p,p'\0) is of zeroth order, and Vc(p,pf\±(X) is 
of first order. Thus the equation for V(p,pf\$) is the 
same as in Sec. 3, except that to zeroth order, all the 
L's, N's, and Q ^ s of Sec. 3 are spin independent. The 
solution for V(p,pr | 0) is then given by Eq. (3.22) on the 
assumption that V(p,p')= V(p+k, p'+k) [see Eq. 
(3.18)]. 

The equation for V <j(p,p' | Q), Q^O, has two types of 
terms on the right in Eq. (C4), one containing only 
V(- - • |0), the other containing Va(- • • \Q), the latter 
from the third db term on the right. One can lump this 
latter F< r ( - - - |Q) dependent term with the left-hand 
side and solve for Va(p,pf\Q) in terms of F ( - - - | 0 ) . 
This gives a polarization effect of the same type as in 
Eq. (2.18), and as appears in Eq. (3.20) in the 1 — dl' 
factor in the denominator. 

By this procedure, we can find from Eq. (4.1) the 
first-order contributions to W (first order being denoted 
by 5's) in the form 

8W.(l',t)= f dfirf2(B^(ri)Vi(r2)C«Ga(l,3)7o(32| 1) 

+ i G 0 ( l , 3 ) 5 7 , ( 3 2 | l ) ] , (C5) 

where the subscript " 0 " means zeroth-order part. The 
Vo here to be used has the components V(p,pf\0) 
described above, and the 6F<r(3,211) has the components 
Va(p,p'\d[zQ) described above. In this general manner, 
one can proceed to compute dW, from which the integral 
equation should follow. 

values of b given by Eq. (4.18), and the Q = 0 value 
given by 

W ) = l> (C2) 

we see that the formalism of Sec. 3 is immediately 
applicable once we identify the K index with Q, and set 
in Eq. (3.3): 

G(p I QxQO = ipf Q.P<'Wp<'>*[A- ̂ p]"1 • (C3) 

Then the components of the type in Eq. (3.7) of Eq. 
(2.15) yield 

To the first part of the square bracket in Eq. (C5) 
there corresponds the W(1) of Eq. (4.19), the last term 
in PF(2) [i.e., in ,B(2) of Eq. (4.24)], and an unseparated-
out contribution to W^ of Eqs. (4.27), (4.28). To the 
second part of the bracket corresponds the first term of 
W(2) and the other part of W(z). I t was thought desirable 
to lump the contributions as in Wa), W(2\ and W{z) in 
Sec. 4, primarily because the two parts of Wis) 

separately are not Hermitean, but together they are. 
[The one part comes from the first-order part of G(l,3), 
the other from the first-order part of G(3,2). See Eqs. 
(4.5) and (4.8).] 

To obtain from Eq. (C4) the approximation actually 
used in Sec. 4, we (1) neglect the polarization effect, 
(2) in the equation for V(p,p'\Q), use Vo(p9p'\0) 
= vs(p,p') on the right, and (3) for the Vo in the first 
term of the square bracket of Eq. (C5), use the right-
hand side of Eq. (3.18), with Vo=vs there. We shall 
amplify this relation below. 

First of all, the neglect of spin polarization is not a 
crucial matter. I t will modify the details of the results, 
but not the order of magnitude or significance. Further
more, its inclusion would enhance the importance of the 
5V term in Eq. (C5). Since our purpose is to demon
strate the importance of this term, the neglect of the 
polarization effect gives us an underestimate. To have 
included it would have amounted to altering the value 
to be ascribed to some of the ^4's in Eqs. (4.33) and 
(4.34). 

Secondly, the equation for V{- • • | Q) described above 
reduces to the same expression [in terms of V(p,p')~\ 
that is implied by Eq. (2.19) (in terms of vs), for in the 
latter, the only contributions stem from the La and G0 

factors in the last two terms on the right, just as they 

V.(p,p'IP") = v(p-p')8p„,o- ( -#) - i 2: E G..(kIQxQ2)G^(*'IQZQMP-P') 
a' kk'Q 

XVAk+Q*, k'+Qi\p"+p-p'-k+k'-Q2+Q3)8(p-p'-k+k'-Q1+Qi, 0) 

+ ( -# ) - 1 E Gv(k\Q1Q,)GAk'\Q,Qi)v3(p~k-Q1)5(p~p'-k+k'-Q1+Qi,0) 
k,k',Q 

XV,(k+Qi,k'+Q3\p"+p-p'-k+k'-Q2+Q3)+ E G,(*|QiQ0 
Qk,K,Kf 

X E VAK, K'\-K+K'+p-p'+p")AAp-k-Qi\K, K'\p'-k-Q2). (C4) 
a' 
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do in Eq. (C4). Thus the estimate of the dV term [of 
Eq. (C5)] used in Sec. 4 has the correct structure, but 
errs only in what is used for Vo(p,pf | 0). Since this Vo is 
reduced to a constant in Eqs. (4.33) and (4.34), we 
conclude that the estimate of the new effects is not 
essentially the worse by use of the weaker iteration 
procedure. 

However, the third remark above, the approximation 
for Vo to be used in the first part of the square brackets 
of Eq. (C5), is a more difficult matter. If we had used a 
shielded expression as in Eq. (3.22), we would have 
obscured the Hermiticity that in Sec. 4 appears in TF(3), 
and was referred to in the second paragraph below Eq. 
(C5). The weaker iteration procedure that led to Eq. 
(2.19), instead of to a shielding denominator as in 
Eq. (3.18), really affects only the Vo term in Eq. (C5) 

I. INTRODUCTION 

SOME years ago, Slater, Statz, and Koster1 (SSK) 
considered the problem of two electrons in an 

empty band (or two holes in a full band) with a view to 
determining whether a triplet or singlet state of the 
pair has lower energy. They concluded that, if the 
band is nondegenerate, a singlet will always be the 
lower. Recent developments in scattering theory2 led 
us to re-examine the model of SSK to investigate 
whether rigorous conclusions may be drawn from it 
concerning the statistical mechanics of a low-density 
electron (or hole) system. 

In a two-body problem, the scattering amplitude is 
a useful quantity to calculate. Not only does it give 
information concerning actual scattering processes, but 
energies of bound states may be calculated, and, of 

*Work supported by the U. S. Air Force Office of Scientific 
Research. 

t Present address: Services Electronics Research Laboratory, 
Baldock, Herts, England. 

1 J. C. Slater, H. Statz, and G. F. Koster, Phys. Rev. 91, 1323 
(1953). (This paper is afterwards referred to as SSK.) 

2 J. Callaway, J. Math. Phys. 5, 783 (1964). 

and does not affect the structure of the new type of term 
proportional to dV. Or, stated differently, the weaker 
iteration procedure affects primarily the spin-mde-
pendent details of the shielding in the potential function 
V in W, but does not affect the spin-dependent effects 
of the shielding that were the purpose of Sec. 4 to bring 
out. Moreover, even this spin-independent term's ap
proximation cannot be too far off, since the major part 
of the spin-independent shielding comes from the 
d(a—b) term in Eq. (2.2), the others acting as correc
tions which can then be treated by an iteration method 
with a fair degree of accuracy. It is hoped that a more 
accurate treatment can be made, but the difficulties 
become so great that the relatively simple treatment of 
Sec. 4 was considered to be the most useful way of 
presenting the problem. 

most importance for the present problem, the effect 
of the interaction on the two-particle density of states 
may be determined. Knowledge of the appropriate 
density of states makes possible calculations of im
portant thermodynamic quantities. 

One way of obtaining a relation between scattering, 
the density of states, and thermodynamics is through 
the virial expansion of quantum statistics.3 It is well 
known that for a gas, the second virial coefficient can 
be exactly expressed in terms of integrals involving the 
scattering phase shifts. We show here how the virial 
expansion may be constructed in a solid-state problem, 
and give an exact expression for the second virial 
coefficient when only short-range interactions are 
included. This theory makes possible a general approach 
to the statistical mechanics of interacting excitations 
at low density. 

Applications of the virial expansion in solid-state 
problems have not been developed extensively hereto
fore, presumably because the density of electrons in a 

3 K. Huang, Statistical Mechanics (John Wiley & Sons, Inc., 
New York, 1963), Chap. 14. 
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In this paper we consider a pair of electrons in an energy band which interact through a short-range po
tential. The scattering amplitude is determined exactly, and the energies of states in which the two particles 
are bound together are found. The change in the density of two-particle states produced by the interaction is 
computed and used to calculate the second virial coefficient occurring in the expansion of the logarithm of the 
partition function in powers of the density. Inclusion of an external magnetic field allows determination of 
the magnetic susceptibility at high temperatures. The result has a form equivalent to that obtained in 
Stoner's theory of ferromagnetism, thereby justifying that theory in the high-temperature region and yield
ing an expression for the molecular-field parameter 0''. 


